下面是小编为大家整理的基于Python数据脱敏与可视化分析,供大家参考。
龙源期刊网 http://www.wendangku.net/doc/20f2fc6d1cb91a37f111f18583d049649b660ee3.html
基于Python的数据脱敏与可视化分析
作者:尹诗玉陈小奎师琳
来源:《电脑知识与技术》2019年第06期
摘要:为分析高校教学质量,并对其进行评价,本文基于python语言对教务系统导出的
原数据进行处理和分析,主要从数据导入,数据预处理,及数据分析三个层面结合实例进行分析。首先利用tkinter库设计出数据导入的界面;其次阐述数据清洗、分组、集成以及脱敏等数据预处理的常用算法,并结合高校教学评价这一实际案例进行了演示,借助pandas库中的dataframe数据类型实现了对“脏数据”的清洗,以及对教师姓名的脱敏;最后利用matplotlib库对处理好的数据进行数据可视化,并结合所得图像对各专业班级及教师的学习和教学状况进行分析与评价。通过本文的数据处理,实现了对教师姓名的脱敏,保护了教师的隐私,并利用图形直观地反映出各教师和班级近几年的成绩分布,使得高校绩效考核更加的方便。
关键词:Python;pandas;数据预处理;数据脱敏;数据可视化
中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2019)06-0014-04
Data Desensitization and Visual Analysis Based on Python
YIN Shi-yu,CHEN Xiao-kui,SHI Lin
(Anhui University of Science and Technology Institute of Mathematics and Big Date,Huainan 232001,China)
Abstract:In order to analyze the quality of college teaching and evaluate it, this paper based on Python language to process and analyze the original data derived from the educational system,mainly from three aspects: data import, data preprocessing, and data analysis. Firstly, the tkinter library is used to design the interface of data import. Secondly, the common algorithms for data preprocessing such as data cleaning, grouping, integration and desensitization are described. The actual case of college teaching evaluation is demonstrated. The dataframe data in the pandas library is used. The type realizes the cleaning of “dirty data” and the desensitization of the teacher"s name. Finally, the matplotlib library is used to visualize the processed data, and the obtained images are used to analyze the learning and teaching status of each professional class and teachers. Through the data processing of this paper, the desensitization of the teacher"s name is realized, the privacy of the teacher is protected, and the distribution of the scores of teachers and classes in recent years is visually reflected by the graph, which makes the performance appraisal of the university more convenient.
Key words: Python; pandas; data preprocessing; data desensitization; data visualization
推荐访问:基于python的数据分析案例 可视化 分析 数据